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Cantoblanco, 28049 Madrid, Spain 
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Abstract. The non-equilibrium Keldysh formalismis used toanalyse the roleoftheelectron- 
phonon interaction in the transport propertiesofdouble.barrier heterostructures and micro- 
channels i n  semiconductors. Elastic and inelastic contributions to the total current intensity 
are introduced and analysed as a function of the electron-phonon coupling; the elastic and 
inelasticintensitiesare related to theelectronicspectrumandto the multiphonon excitations. 
The results obtained for the different mesoscopicsysremsconsideredmmpare well with the 
experimental evidence.The Keldysh formalismisshown to bevery suitable toanalyse many- 
body effects in mesoscopic systems 

1. Introduction 

Transport in small semiconductor structures has been the subject of many studies in the 
last decade. These heterostructures are extremely attractive because of their very many 
technological applications. From an academic viewpoint the experimental study of their 
transport properties permits direct confrontation with theoretical results obtained using 
different formalisms and approximations for a great variety of conditions related with 
temperature, external magnetic and electric fields, dimension, disorder and many-body 
interactions (Biittiker 1988, Landauer 1989). 

We are interested in addressing the effect that inelastic scattering and in particular 
the electron-phonon interaction has on the transport properties of these systems. 

In the last few years, experimental measurements have shown clear evidence of the 
effect that the electron-phonon interaction has on the electrical current of mesoscopic 
systems. Thisis thecase of theobservedoscillatory behaviour oftheelectricconductance 
in semiconductingpoint contacts (Hickmott era/ 1984, Lu etall985) and the appearance 
of satellites of the central resonant peak in a double-barrier resonant tunnelling exper- 
iment (Goldman etal1987a, b). Non-thermal occupation due to a hot-carrier quantum 
distribution in semiconductor devices is another property which is mainly controlled by 
the electron-phonon interaction due to the mechanism through which electrons achieve 
thermodynamical equilibrium. 

t Permanent address: Departamento de Fisica. UniversidadFederal Fluminense, Outeiro de Sao JoaoBatista 
sin, Niteroi, RJ, Brazil. 
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Figurel. Heterostructuresdiscussed in the paper: 
(n )  potential well with a double-harrier het- 
erosirwturc: (b)  microchannel. 
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While inelastic scattering has been analysed before in mesoscopic systems, the 
approach has been mainly phenomenological (Biittiker 1986, Goldman el al 1987b, 
Yuming 1988). Recently, studies have appeared in the literature based on a simplified 
microscopic model which simulates a double-barrier heterostructure by a single-site 
energylevelcoupledtoideal leadsand tophonons(Caieral1989, Jonson 1989, Wingreen 
er a1 1989). Within the context of this model, resonant tunnelling in the presence of 
phonons has been studied either as a scattering problem through the calculation of the 
transmission matrix which implies knowledge of a two-particle Green function at the 
resonant site, or as a first-order tunnelling strength approximation using the tunnelling 
Hamiltonian formalism. Although these studies represent a significant contribution, it 
is difficult to generalize them in order to study real systems which need for their 
description many electronicandphonon states. This is particularly important when there 
is no spatially localized resonant level to be considered as is the case for multi-phonon 
processes in semiconductor mesoscopic channels. For these systems the scattering elec- 
tron-phonon mean free path Lcph is small in comparison with the microchannel length 
Le+, Q L (Kulik and Shekhter 1983). Here the electrical current can be thought of as 
being a diffusive drift of electrons which at certain sites is interrupted by the emission of 
an optical phonon. A theory capable of describing this situation requires a large number 
of states, at least one at each atomic site with position-dependent parameters. I t  is 
evident that such a description needs either a full self-consistent calculation of the 
electronic charge (Pernas er a1 1990). or at least a plausible potential profile which 
depends upon the external bias. 

The microscopic description of a system with many electronic and phonon states 
which incorporates the influence of inelastic scattering effects is crucial in order to 
understand the rich phenomenology associated with transport in mesoscopic systems. 
In particular, we mention the very interesting intermediate region between ballistic and 
macroscopic transport, 

In this paper we present a microscopic approach to studying the effects of electron- 
phonon interaction on the transport properties of microsystems, based on a thermo- 
dynamical non-equilibrium formalism derived by Keldysh (1965), We shall follow the 
ideas proposed some time ago by Caroli er a1 (1971, 1972) in their study of tunnelling 
phenomena through insulating barriers. This formalism has several advantages. It 
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requires the calculation of only one-particle Green function, even for many-body 
systems; it gives exact results for the non-equilibrium independent-particle situation, 
and the many-particle effects can be calculated in principle to all orders in perturbation 
theory. Moreover, it provides all the tools to obtain in a self-consistent way the potential 
profile produced by the external bias. At this point, it should be commented that 
recent work by Datta (1990) and DAmato  and Pastawski (1989) has shown that the 
phenomenological approach followed by Buttiker to introduce dissipation via fictitious 
voltage probescan be related to the Keldysh formalism followedin this paper. Moreover, 
Chen and Ting (1990) used the Keldysh method to analyse other one-electron transport 
superlattice properties, and it is worth exploring this technique for systems with many- 
body interactions like the case considered here. 

The paper is organized in the following way. In section 2 the microscopic model is 
presented. Sections 3 and 4 are dedicated to developing the formalism to be applied to 
study the transport of carriers under the effect of the electron-phonon interaction. We 
study the results obtained for the transport properties of double-barrier heterostructures 
and microchannels in semiconductors in sections 5 and 6. Finally section 7 is devoted to 
the summary and the conclusions. 

2. The microscopic model 

The heterostructures under study, as shown in figure 1, are described by the electron, 
phonon and electron-phonon Hamiltonians. The electronic part of the system is repre- 
sented by the Hamiltonian 

H, = E Eini + E t ; i ( c ~ c , o  + cc) 
i ;j 

0 

where E, is the site-dependent diagonal energy which models the microscopic charac- 
teristics of the heterostructure and the potential profile created by the stationary elec- 
tronic charge that is accommodated according to the applied bias and the details of the 
structure. Although it is possible to obtain a self-consistent solution to this problem, for 
simplicity we shal1 assume that the applied bias produces a linear shift of the diagonal 
elements of the Hamiltonian along the sample. 

In the direction perpendicular to the current flow. the system is assumed to possess 
translational symmetry such that kl, is a good quantum number. This will be the case of 
the double-barrier heterostructure. In the study of the point contact we shall suppose 
that the system is simply one dimensional. The off-diagonal matrix elements are taken 
betweennearest neighbours. They aresitedependentsoasto beable to takeintoaccount 
the effective masses of the different semiconductors which form the heterostructure. 

It is well known that a quantum well or more generally a thin film has a great variety 
of optical phonon modes (slab phonons) corresponding to bulk or interfaces excitations 
which have beenobservedexperimentally (Shah 1986). Although the symmetryofthese 
modes must be considered in order to explain the reduction in hot-electron relaxation 
in these devices in comparison with bulk materials, we shall neglect the influence of 
interfaces in the phonon spectra which will be taken to be 3D and completely flat. The 
main influence of this confinement is to reduce the strength of the interactions with 
electrons (Jain and Das Sarma 1989, Ridley 1989) which can be taken into account 
by renormalizing the electron-phonon interaction in relation to its bulk value. As a 
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consequence and for simplicity we assume that the Hamiltonian corresponding to the 
phonon degree of freedom is given by a sum of independent harmonic oscillators of 
frequency wo: 

E V Anda and F Flores 

Hph = hwo bTbi. (16) 

Finally the electron-phonon interaction is given by 

where in principle the interaction is extended to all the sample, 
We have assumed that the optical phonons have acompletely flat dispersion relation 

and that the electron-phonon interaction i s  local. This is justified because the velocity 
of propagation of a phonon is much less than the Fermi velocity; the phonon does not 
propagate much during the lifetime of the electronic fluctuation. 

The theory that we develop is not restricted to any approximation concerning the 
contacts. We assume that the leads and its interaction with the heterostructure are 
represented by a one-electron Hamiltonian He. I n  practice the leads are modelled by 
two Bethe lattices with a coordination number 2 > 2 which in practice operate as 
thermodynamical reservoirsof electronswithenergies E < EFRand E < EFLfor the right 
and left contacts respectively. For large values of Z this coincides with the bandwidth 
limit approximation which supposes that the bandwidth in the contacts is much larger 
than thecharacteristicenergiesof thesystem: the resonance width. thephononenergies, 
the applied voltage, etc. 

3. The non-equilibrium formalism 

The current circulating along a sample when an external bias is applied is in general a 
non-linear response phenomenon occurring in a system which is in non-equilibrium. 

In view of the irreversible character of the tunnelling current, the usual perturbation 
theory does not apply and it is necessary to use a more general formalism capable 
of treating non-equilibrium processes. We adopt the Keldysh (1965) diagrammatic 
perturbationwhichrequiresthedefinitionofastateofzerocurrent flowwhichisobtained 
by partitioning the system at an arbitrary point such that each partition (left and right) 
has a Fermi level defined by EFL and ELR where the difference EFL - EFR corresponds 
to the external appliedvoltage. This state is then used to build upan infinite diagrammatic 
expansion, taking as aperturbation the Hamiltonian which connects the two parts of the 
system. The diagrammatic expansion generated by this perturbation theory can be 
summed up without further difficulties and an exact result obtained as far as a single- 
particle system is concerned (Wingreen ctal1989). The effect of the interaction between 
particles can be incorporated into the theory usingwell known approximations provided 
by many-body theory. 

In order to obtain the properties of the system, it is necessary to calculate non- 
equilibrium propagators which, following Keldysh formalism, are 

- iC;+ ( I  - t ') = (c: (t)c,(r')) 

iCt-(t - t ' )  = (c,(t')cT(t)). 
(20) 

(2b) 
The Fourier transform diagonal elements G;+(w) and G:-(w) are the spectral 
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representations of the state of occupation of site i for electrons and holes, respectively. 
The retarded and advanced Green functions, Gf( t  - t ' )  and G $ ( t  - t ' )  respectively, 
give information on the distribution of available states of the system without any ref- 
erence to their occupation. 

In a similar way the propagators corresponding to phonons D;'(t - t ') ,  
D;-(r  - r'), D t ( t  - 1 ' )  and D t ( 1  - 1')  are defined. 

The propagators G$-(w) and G : ( w )  satisfy Dyson-type equations which are given 
by the formal equations (Keldysh 1965) 

' 

G-+ = (1 + GRXR)g-'(l + ZAGA) + GRZ-+GA 

GR = gR + gRZRGR. 

For convenience, these equations are written in the following way: 

- t  
Gg(w) = {[l + G R ( ~ ) Z R ( ~ ) ] g 7 ' ( ~ ) [ 1  + xA(w)GA(o)]};, ( 3 4  
-t 

G:y'(w) = [GR(w)Z:- ' (w)GA(w)] , ,  

G ; + ( w )  = G$(w)  + G,;""(w) 
-t -t 

+ k R Z R ( @ ) G R ( w ) l , ,  

(34 

(34 

with similar equations for G ; - ( w )  and G;(o) .  Note that G-* has been split into its 
elastic and inelastic parts (Caroli er a1 1971, 1972) (see also below). The unperturbed 
propagators g,,(w) correspond to the system in thermodynamic equilibrium with a 
partition in it and without many-body interactions; g"(w) andg+-(o) are simply given 
by 

where f ( w )  is the Fermi distribution function. As will be discussed below, all the 
information on the inelastic processes -re contained in the self-energy E-+(@). As a 
consequence the+ non-equilibrium propdgator G ; + ( w )  can be expressed as the sum of 
Gf;' ( w )  and C:?' ( w ) ,  the elastic and inelastic occupation spectra as given in equations 

The retarded and advanced self-energies ZR(o) and X A ( w )  have two contributions: 

(i) a local time one-particle self-energy which restores the eliminated connection 
between sites 1 and 2 (we are assuming that sites 1 and 2 are neither connected nor 
directly affected by many-body effects); 

In fact we are assuming that inelastic processes are restricted to a part of the system that 
can be isolated, i.e. to the well region for the case of a double-barrier heterostructure, 
or to the microchannels in semiconducting point contacts. Since the simultaneous treat- 
ment of the many-body interaction and the non-equilibrium situation is a difficult 
problem, it is tempting first to solve the many-body problem for the system isolated from 
the leads and then to tackle the non-equilibrium configuration of the system by linking 
it to the leads. Unfortunately, the electron-phonon interaction has not been included 

- +  - 

(3). 

(ii) a many-body self-energy coming from the electron-phonon interaction. 
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in the zero-order propagator because creation and destruction operators of many-body 
states do not satisfy the Wick theorem, making the independent-particle diagrammatic 
expansion which re-established the connection in the system much more involved. 

To calculate the self-energies XR(u) and Z-'(u), standard many- body diagrammat ic 
methods are used to sum infinite series obtained by perturbation theory. The Green 
function satisfies a Dyson equation with a vertex part, which according to Migdal(1958) 
is proportional to 1 + O(m/M) where m and M are the masses of the electron and the 
nucleus, respectively. Within the context of this theory, neglecting terms of the order of 
miM in the self-energy Z : ( w )  describes the creation of a virtual phonon together with 
an electronic iso-energetic fluctuation. As the velocity of propagation of phonons is 
much less than the Fermi velocity, Zt(u) is short ranged and can be approximated by a 
local object. 

E V Anda and F Fhres 

If we restrict ourselves to spatial locality, Z-* ( U )  can be written as follows: 

d o '  D,+(w - U')G;'(U) (4) 

It is important to  emphasize that the Green function G,;' (U) appcaring in equation 
(4) corresponds to the propagator dressed by the electron-phonon interaction. The 
calculation of these quantities requires a self-consistent solution for G, Z and D. 

Great simplification is obtained if the dressed propagators in equation (4) are sub- 
stituted by the undressed propagators. which reduces the expansion to second order in 
the electron-phonon interaction. This is normally a good approximation for semi- 
conductors as is the case for resonant tunnelling in a double-barrier heterostructure, 
typically GaAs/AI,Ga, -,As, for which the electron-phonon scattering mean free path 
is normally greater than the length of the sample along the electrical current direction. 
Then the satellite of the resonant tunnelling peak seen experimentally is a typical one- 
phonon process. 

The optical phonon emission in ballistic transport detected in microchanncls of 
InGaAs is, however, a very well characterized multi-phonon process. Its study requires 
one accordingly to consider higher-order corrections. This is done by taking the dressed 
electron propagator G : - ( w )  in equation (4). 

For the case of an optical phonon of frequency U,,. 2;' (U) is expressed by 

ZT'(fJJ) = (v;/sn)[(l + /IJG;+(u + U " )  + PI,G,+(U - U o ) ]  (5) 
where n, is the number of phonons present in the system at site i. In principle, n; has to 
be obtained by integrating the phonon occupation spectral representation at site i. For 
simplicity we have taken the undressed phonon propagator toobtainequation (5)which 
gives 

Dit(@) = (-i/4)[/7,6(w + coo) + (1 + nj)6(u - U") ] .  (6) 
It is interesting to  note that G-'(u) * 0 (G+-(u)  # 0) when w < > EFR) at 

T =  0, while 2 - ' ( w )  # 0 (Z'-(u) # 0) when U < EFL - Au,,(u > EFR + hue). This 
implies using the relation 

2 1 m [ ~ ~ ( u ) ] = ~ ; + ( u )  -zT-(u) (7) 
that. in the interval ER < U < EFL, Im[2P(u)] # 0 when E,, - EFR > Awe. which 
establishes the condition for a real inelastic optical phonon process to occur. For an 
applied bias less than this limit, inelastic scattering is controlled by acoustic phonons 
which in general interacts more weakly with the electronic degrees of freedom. As a 
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consequence it is possible to say that the applied bias together with the temperature are 
the relevant variables to  regulate the electron-phonon effect on transport. 

Im[XF(w)] = - (V?/8n){[G:-(w - ma) - G;+(w + wO)]/Z 

The self-energy Z p ( w )  can be obtained using equations (5) and (7). It yields 

+ 2n, Im[GF(w - w o )  + G%(w + ma)]} ( 8 4  
and Hilbert transforming this equation gives 

where we have used the relation 

2Im[Gf(w)]  = G ; + ( w )  - G $ - ( w )  (9) 
Knowledge of the self-energies permits one to obtain the Green functions of the 

system and all its physical properties that we are interested in. 

4. The electrical current density 

In figure 1 we have represented the two heterostructures that we have studied. The total 
current density crossing the sample isobtained as the thermodynamical non-equilibrium 
mean value of the current density operator. This mean value can be obtained by 
calculating the probability that an electron hops from site i to site i + 1, minus the 
probability of the reverse process. As there are no sources or sinks of electrons in the 
system. the result is independent of the particular choice of site i. For the Keldysh 
formalism this is true if the perturbation expansion from the state for which the system 
is partitioned is done to all orders of perturbation theory. As the choice is a matter of 
convenience, it will be made at the contact between the left lead and the heterostructure, 
involving the sites 1 and 2 shown in figure 1. The mean value of the current density is 
then given by 

J = (ie/hP1z((c:,c2,) - (cLclo)) (10) 

where sites 1 and 2 are linked by the one-particle hopping f l ? .  
In order to calculate the non-equilibrium mean values appearing in equation (10) we 

apply the formalism presented in the last section. After some algebra. using equations 
(3) and (10) the total current density can be obtained as the sum of two contributions: 
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where N is the number of layers which compose the sample. As is evident from equation 
(3d)  for the undressed Green functions g;+(w) and ~ T - ( w ) ,  integration of equation 
(10) is restricted to the interval EFL - ,EFR which guarantees that the current density is 
zero when there is no external applied bias. J,, describes processes in which the electron 
participating in the conduction excites a virtual phonon without changingits totalenergy. 
The inelastic contribution given by equation ( l l b )  refers to a situation in which a real 
phonon is emitted or absorbed and an electron tunnelling through the structure loses or 
increases its energy. The convolution between the electron and phonon propagators in 
equation (llb).indicatesthissituation. For thecaseofanopticalphonon, usingequation 
(9, equation (lob) can be rewritten as 

E V Anda and F Flores 

When the system is at T = 0, so that ni = 0, equation (11) gives a contribution if 
EFR + hwo < EFL. indicating that for an inelastic process to take place the scattered 
electron needs an empty state to  go to. 

The total current density given by equation (3c) has been calculated at the edge of 
the heterostructure betweenthesitesl and2infigure 1. Itsvalue,asalreadymentioned, 
is site independent. The elastic and inelastic current densities are, however, site depen- 
dent in the region where the electron-phonon interaction operates, while they are site 
independent outsidc it. Note that, in order to calculate the effect that the inelastic 
processes have on the total current density, the elastic and inelastic contributions have 
to be calculated outside the heterostructure, in the region where the carriers (electrons 
or holes) have already passed through the sample. 

5. Transport in a double-barrier heterostructure 

Since the dominant electron-phonon interaction in polar semiconductors involves longi- 
tudinal optical phonons, we neglect the effect of acoustic phonons in  the study of the 
tunnelling properties of the structure. Certainly for EFL - EFR > ho,, this is completely 
justified. The electron-phonon interaction is supposed to be active in the well region. 
As is well known, double-barrier heterostructures possess slab phonons: bulk-like- 
confined and interface phonon modes (Ridley, 1989; Jain and Das Sarma, 1989). Since 
the electronic wavefunction is small and the phonon is exponentially localized at the 
interface, the electron-interface phonon interaction is weak and can be neglected. As 
far as bulk-like phonons are concerned, the main effect originating from confinement is 
to introduce selection rules imposed by bynimetry which leads to a reduction in the 
effective electron-phonon interaction. This effect can be incorporated in our model by 
simply renormalizing the strength of the interaction. 

As the first example. we study a symmetric I D  heterostructure. Not only has the 
analysisof ID systems academic interest. Recently (Ridley 1989), peaksobserved in the 
resonant tunnelling of GaAs(AI,Ga, -,As/GaAs heterostructures have been attributed 
to confinement in a perpendicular direction to  the current density, which corresponds 
for each peak to a quasi-one-dimensional system. Typical values of the electron-optical 
phonon interaction strength are 0.1 < g < 0.5 whereg is defined byg = ( V , / h u ~ ~ ) ~ .  



Inelastic scattering in resonant tunnelling heterostructures 9095 

a 0 0  

30.00- 

U 
E 
c 
U 

Ln 
f 20.00 

30.00 

- 

- 

3 

U 
0 

10.00 

0.00 
-0.02 C a02 

w/ I 

. .- 
Yt 0-02 

Figure 2. Local density of states (-) at the 
middle of the well discussed in the text for T = 0. 
E,, = 20 meV and AV = 300 meV. - - -, occu- 
pation spectra. 

Figure3.Asfigure2for T =  300K. 

The heterostructure is assumed to be constituted of barriers of nine atoms and a well 
of ten atoms with barrier heights between 40 and 400 meV, which in fact correspond to 
structuresof GaAs/AI,Ga,_,As/GaAs withdifferent valuesofx. Theeffective massm* 
which determines the value of t = 5.2 eV is taken to be m* = 0.067 and the optical 
phonon frequency Amo = 36 meV. The Fermi energies are obtained for two different 
situations: EFL = 20 meV and 70 meV and E ,  = EFL - AV, where A V  is the external 
applied bias. 

In figure 2 we show the local density of states and the occuption spectra at T =  0 at 
the middle of the well for g = 0.5, EFL = 20 meV and an applied bias A V  = 300 meV, 
which corresponds to the value for which the system is at resonance. 

The appearance of two polaron peaks to the right and one to the left of the main 
peak is clear. These quasi-particle excitations correspond to the dressed electron and 
hole densities of the main peak due to the cloud of emitted phonons, since at zero 
temperature the carriers can only emit phonons. The electron-like peak (the one on the 
left) is much smaller than the first on the right because the occupation electron density 
of the main peak is small compared with the occupation hole density. This is seen in the 
occupation spectra presented in the same figure 2 .  According to equations (3a) and (36), 
this occupation spectra can be split into elastic and inelastic contributions. The elastic 
contribution extends from 0 to EFL, while the inelastic contribution appears below E = 
0; this case corresponds to the electrons that have relaxed their energy by the emission 
of a phonon, so that they are filling the electron-like peak which appears below the main 
peak. The n-phonon processes for n > 1 are almost negligible for the electron-phonon 
interaction strength used to calculate figure 2. 

In figure 3 we show the same case as in figure 2 but for T = 300 K. Two thermal 
effects are worthwhile mentioning. The two polaron peaks around the main peak are 
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Figure 4. Self-energy as a function of w for the 
case of figure 2. -1-, Re[Z.R(w)]: -. 
W , R ( w ) l .  

I - JT ...... JC, 

JI”  _. - 

Figures. J-Vch3r~clerisl;c~ for thecireoffigiirc 
?.Thetoralrurrentdensit! I ,  (- )issplit into 
its elastic part I,, ( .  . . .) 3nd inelxqtic p m .  I ,  
( - , - )  

now more similar to each other because of the existence of thermal excited phonons in 
the sample: the temperature increase makes the spectra more symmetric around the 
main peak since the emission and absorption parts are proportional to 1 + n, and n,,  
respectively (n ,  being the number of phonons in the i site). On the other hand, owing to 
thermal excitations both the elastic and the inelastic occupation spectra have con- 
tributions above Em. Now, in the case T # 0 we find that inelastic contributions associ- 
ated with electrons have increased their energy by the absorption of a phonon, so that 
they are partially filling the peak appearing Awu above the main peak. 

It is worth mentioning at this point that similar polaron peaks due to optical phonons 
have been found recently by Cai er ai  (1989) who have calculated the transmission 
coefficient of an electron through a double barrier in the presence of electron-optical 
phonon scattering. The Keldysh method allows us to calculate the total current density, 
theoccupiedelectrondensityofstatesandalsoother relatedpropertiesdiscussed below. 

The peaks in the density of states represent excited polaron states of the system with 
a lifetime given by Im[ZF(w)]. The self-energy as a function of w is given in figure 4for 
the same sample described before. From the figure we obtain that the lifetime of the 
polaron at resonance is of the order of s, while the electronic tunnelling times that 
can be obtained from figure 2 are of the order of 2 x s. This is the reason why only 
a small fraction of the electronic occupation spectra appears below the incident energy. 
The electrons go through the well too rapidly for it to be possible for them to relax 
through theemissionof anopticalphonon. Thissituationisclearly seen in figure5 where 
we show the J-V characteristics at T =  0. The elastic and inelastic contributions to 
the total current density are shown explicitly. The tunnelling is essentially an elastic 
phenomenon in this case. However, this depends upon the applied voltage and in 
particular, for an applied voltage corresponding to the emission of a phonon, inelastic 
processes are more important than elastic processes. Tunnelling is here partially elastic 
and partially sequential. The electron enters into the well elastically, it reduces its 
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Figure6. J-Vcharacteristics lor the case of figure 
3. The total currenl density. JT (-) is split 
intoitselasticpartJ,,(. . . ,)andinelasticpartJ~,.., 
( - . - ) .  

Figure7. Totalcurrentdensityasa functionofthe 
applied voltage lor the cases in figure 2 (T = 0) 
(-)andfigure3(T=300K)(-.-) .  

energy by the emission of a phonon and then it  continues its trajectory outside the 
heterostructure. This aspect of the problem will be discussed in more detail below. The 
phonon-side band peak of the elastic current density coming from polaronic excitations 
is very small. The phonon absorption peak is non-existent because at T = 0 there are no 
phonons in the system. The phonon-emission-assisted tunnelling represented by the 
inelastic contribution to the current density has an applied bias threshold of 
EFL - EFR > h a o  as is apparent in figure 5. 

In figure 6 we present the J-V characteristics of the same system for T = 300 K. The 
main difference from the results already analysed is the large broadeningof the resonant 
peak. The reasons for this behaviour are essentially two: the first is the promotion of 
electrons to higher energies as they absorb phonons in the thermal bath, and the second 
is the existence of available thermally excited electrons which energetically match the 
resonance condition for a much lower applied voltage. The disappearance of the resonant 
peak is produced by an applied voltage such that the energy level of the localized state 
at the wellgoes beyond the bottomof theconduction bandoftheemitter. Thiscondition 
is independent of temperature as can be observed by comparing figures 5 and 6. Inelastic 
processes are favoured owing to the increase in the phonon population with increasing 
temperature. The inelastic contribution to the current density rises in comparison with 
the T =  0 case. The side-band peak loses definition and the current density increases 
rapidly with increasing applied voltage in the out-of-resonance region owing to the 
presence of more energetic electrons which are capable of participating in the transport 
process. 

Direct comparison of the total current density as a function of applied voltage for 
the cases T = 0 and T = MO K can be seen in figure 7 .  

In order to study the effect that the tunnelling well time has on the non-equilibrium 
electronic population we have compared in figure 8 the occupation spectra at the middle 
of the well for various heterostructures which differ only in the barrier height (the barrier 
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Figure 8. Occupation spectra at the middle of the 
well discussed in the text for two heterosrructures 
having different barrier heights: - ,the bar- 
rier height is 640 meV; - -, the barrier height is 
100 meV. 

heightcontrolsthetime that theelectronspendsin the well beforeescaping).Theapplied 
bias is such as to have the first polaron side-band peak in resonance for EFL = 70 meV. 
It isclearfromthefigurethat, forthecaseofabarrierheight E ,  = 100 meV,theelectrons 
go through the hererostructure essentially without suffering an inelastic collision. The 
electronic population at the centre of the well is almost contained between the bottom 
of the conduction band and the Fermi energy EFL of the emitter. On the contrary for the 
sample with E ,  = 600 meV. as the electrons are reflected many times back and forth in 
the barrier. the real path is in  this case longer than the mean free path for inelastic 
collisions and, as a consequence, almost all electrons have released their energy through 
oneortwoscatteringphononprocessesto theregion belowthe bottomoftheconduction 
band of the emitter. 

For the sake of completeness we have calculated the .ITV characteristics for a 3~ 
sample. The problem can be mapped onto a I D  situation by simply Fourier transforming 
alongthe direction perpendicular to the current; thus, we recover a ID Hamiltonian with 
parameters depending upon k,,. We suppose, as already mentioned, that the dispersion 
relation for the optical phonon is completely flat and that the electron-phonon inter- 
action is independent of k ~ .  For small values of E ,  = 20 meV the shape of the &-V 
curve is almost the same as in the I D  case; for greater values of EFL the curve broadens 
andadopts the wellknown triangularshape. and thesatellite peakislessdistinguishable. 

We have calculated the influence of including the electron-phonon coupling along 
the barriers. For the case of AlGaAs there are two optical phonons involved in the 
problem at 35 meV and 47 meV. The JT-V characteristic suffers only very small effects 
andthere isnoevidenceofapeak located at47 meValthoughwehave adoptedthesame 
value for g = 0.5 as in the well region. This result is a consequence of the fact that the 
density of states at the barriers is much less than at the well and there are not enough 
electrons to induce the emission of a phonon. It is likely that the assignment of the 
satellite peak. detected experimentally (Goldman er al 1987a. b) for GaAs/AlGaAs/ 
GaAs. to emitted phonons at the barriers. is not appropriate. 

6. Multiphonon process in semiconductor microchannels 
The C-V characteristics of metal-semiconductor contacts and capacitors of GaAs/ 
AI,Ga,_,Asshowperiodicstructures (Hickmott era1 1984, Lueral1985). Thisbehaviour 
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has been explained by multiphonon processes that take place when carriers under the 
effect of an applied bias move along the channel. Kulik and Shekhter (1983) have treated 
the problem of a narrow semiconductor channel of width d theoretically, where d is 
much smaller than the channel length L and Aa, the mean free path due to acoustic 
phonons. The theory is based on Boltzmann equation formalism and predicts a C-V 
curve that has singularities when the applied voltage: AV = hwW These singularities 
result from an n-phonon emission event. Although the experimental behaviour is not 
singular, this theory provides a qualitative description of the multiphonon processes. 

In order to show the applicability of the microscopic theory developed here to 
describe this type of phenomena, we have studied the electrical current of a linear chain 
in contact with two reservoirs of electrons having Fermi levels EFL and EFR represented 
by two Bethe lattices of coordination 3. This idealized model approximately describes 
the situation of the system in which we are interested, as is schematically shown in figure 
l(b). Although we have taken a very simple model, the inclusion of more sophisticated 
and realistic conditions does not generate serious difficulties in the calculation. 

In order to have multi-optical-phonon processes, the condition L B A. has to be 
satisfied, where Lois the mean free path due to optical phonons. In this case, electrons 
can suffer an n-phonon process as they go along the sample, with the maximum value of 
n such that n = AV/fiwo, AV being the potential drop in the chain. 

For L B Lo the linear chain has an ohmic resistance; for an applied voltage, it is 
appropriate to assume that the potential profile has a linear site dependence within the 
chain. For simplicity we assume that the contact resistance is zero, although this is not 
necessarily the case. The only significant effect of the contact resistance is that the 
oscillations seen in the conductance have aperiod longer than wo (this in fact corresponds 
to the experimental result) owing to the potential drop at the contacts. However, the 
contacts have a more significant effect, related to the quantum oscillations of the 
conductance as a function of the applied voltage because of the existence of standing 
waves produced by reflections at the contacts. These oscillations might mask the rela- 
tively smaller oscillations due to multi-phonon processes. Fortunately in real systems 
this behaviour is not detected because the microchannels are not well defined and the 
potential profile is smooth at the edges. This situation can be simulated for the simple 
model that we are considering by supposing that the coordination number of the Bethe 
lattice reservoirs varies smoothly along several atoms from the chain value Z = 2 up to 
Z = 4. Twenty atoms are sufficient to eliminate the quantum interference oscillation of 
a linear chain constituted by 200 atoms in a situation in which the system is free of 
electron-phonon interactions. This guarantees that all possible oscillation effects are 
due to electron-phonon interaction. 

In our calculation, we take EFL = 0.011, EFR = E ,  - A V  and hwo = 0.007t which 
corresponds to the phonon energy for GaAs (I = 5.27 eV). We also take the electron- 
phonon strength g = 4, which has been chosen such that L B Lo,  where 

hkF A -  ’ - m* Im ( ~ ‘ ( w ) )  

((ER(@)) being the mean value of XR(w) in the interval (EFL, Em));  kF is the Fermi 
momentum, and fikF = (0.021m*)’/’and m* = 0.067 for GaAs. 

In figure 9 we show the .IT-V and dJT/dV-V curves. Although the current density 
oscillations are small, its derivative shows clear oscillations. When the applied voltage 
increases so as to allow for a subsequent phonon process, the self-energy of equation (4) 
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has an extra renormalization (this occurs because the propagator in equation (4) is a 
completely dressed self-consistent object). This is reflected in a small oscillation in the 
conductivity due to the appearance of an extra channel for the electrons through the 
emission of a new phonon. Although it is not possible to make a direct comparison with 
the experiments, the theoretical resultsobtained here are similar, and thegeneral shape 
of the curves equivalent, to the experimental measurements obtained for microchannels 
of In,Ga,-,As (Lu er al198S). 

7. Summary and conclusions 

We have addressed the effect that electron-phonon inelastic scattering has on the 
properties of mesoscopic semiconducting structures. We have used a Green function 
formalism based on the Keldysh diagrammatic expansion. This formalism has shown to 
be particularly suitable for analysing a situation where the many-body system is under 
the effect of a large applied voltage and as a consequence very far from equilibrium. 

In the last few years, a very elegant transport theory has been developed which 
considers the sample to be connected to inelastic scatterers wmhich randomize the phase 
of the electronic wavefunction (Biittiker 1986). Although this phenomenological theory 
has contributed to clarification of many aspects of the inelastic scattering, we think that 
there is still a lack of a microscopic theory capable of describing in detail the different 
kinds of inelastic event that an electron suffers under the effect of an external bias. This 
requires use of a many-body theory to study the current as well as other non-equilibrium 
properties of the system, i.e. the occupation spectrum which it is essential to know if we 
were interested. for instance, in the optical properties of the system. This paper is an 
effort in this direction. We have studied theeffectsoftheelectron-phonon interaction, in 
particular for thecase of adouble-barrier heterostructure and a mesoscopicconstriction. 
Although we have adopted simple models, we have obtained results which compare well 
with the experimental measurements. Full quantitative agreement of the theory with 
the experiments (current intensity, peak-to-valley ratio, etcj would require a more 
realistic microscopical model including, within the context of a self-consistent Hartree- 
Fock approximation for the electron-electron interaction, the potential profile as a 
function of position. It is well known that the interesting bistable behaviour (Goldman ef 
nl1987a. b) observed in double-barrier structures is due to a charge-generated potential 
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which being non-linear gives rise to more than one solution for the JT-V characteristics. 
We have assumed for the systems analysed here that the potential profile is linear as a 
function of position along the current direction. Although this is perfectly justified for 
the linear microchannel, in the double-barrier case, as the system is heterogeneous and 
the charge is unequally distributed, this assumption is not always realistic. 

The self-consistent treatment of the electron-lectron interaction in order to study 
the effect of a non-linear potential profile and the metal-insulator transition due to 
electronic correlation will be the subject of a future publication. 
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